PRÁTICA PEDAGÓGICA: A INTERAÇÃO NA SALA DA AULA
Por Sergio Sodre | 21/02/2024 | EducaçãoPRÁTICA PEDAGÓGICA: A INTERAÇÃO NA SALA DA AULA
SERGIO SODRE PEREIRA
RESUMO
O presente artigo trata de práticas abordadas durante o estágio supervisionado da Disciplinade matemática em uma turma de Ensino de Jovens e adultos no nono ano de uma escola pública de Santana do Livramento. Devido ao fato de os alunos não responderem satisfatoriamente aos estímulos didáticos observados pelo estagiário nas duas primeiras etapas da atividade curricular, tampouco a sua primeira tentativa de inserir outra prática, o mesmo optou pelo atendimento direto em cada classe, mostrando a cada aluno, ou pequeno grupo, o passo a passo na obtenção das
respostas, antes da resolução no quadro. Esta prática mostrou-se mais satisfatória no processo de aprendizagem, pois possibilitou ao docente entender melhor as dificuldades de cada um dos aprendizes e a estes, obterem uma atenção especial, auxiliando de maneira rápida na eliminação de suas dúvidas, uma vez que antes, muito apenas copiavam a resolução dos cálculos do quadro sem entender realmente o processo de busca das respostas. Neste artigo, portanto, será abordada a interação entre o professor e os alunos no ensino da Matemática na modalidade de ensino de jovens
e adultos, uma vez que esta possui peculiaridades que necessitam ser trazidas a luz com o objetivo de aprimorar seus processos de ensino-aprendizagem.
INTRODUÇÃO
Em termos gerais as turmas de Ensino de jovens e adultos são formadas por alunos com históricos de várias repetências por reprovações ou desistências, quer seja por motivos pessoais,como os horários de trabalho e o cansaço que este produz, quer seja pelas dificuldades que encontram em algumas disciplinas. Isto produz turmas com membros de idade por vezes avançada para o ano, ou jovens que estão buscando apenas um diploma que os ajudará a ingressar ou permanecer no mercado de trabalho e seus objetivos não vão muito além disso.
Este quadro produz indivíduos com déficits educacionais latentes e que apresentam como característica principal a desmotivação para aprender e a falta de compromisso com a aprovação, o que faz muitas vezes seguirem os processos de reprovação até desistirem por completo de concluir mesmo que seja o ensino fundamental.
Frente a este quadro, cabe ao professor encontrar mecanismos para obter a atenção e, quiçá, recobrar o entusiasmo em aprender, no maior número possível de alunos que conseguir e, para isso, a interação com estes surge como uma possibilidade de aprendizagem neste caso, da Matemática.
FUNDAMENTAÇÃO TEÓRICA
A turma onde a prática pedagógica foi realizada já havia começado o conteúdo de equações de 2º grau, mais precisamente nos coeficientes a, b e c, inclusive uma pequena série de exercícios já havia sido aplicada e isso possibilitou ao estagiário desenvolver no seu primeiro dia de regência uma disputa onde a turma foi dividida em duas equipes que disputavam o seguinte jogo: Foram disponibilizados três potes, cada um contendo uma série de coeficientes, ou seja, um pote com coeficientes a, um pote com coeficientes b e o último com coeficientes c; o aluno da
rodada pegava uma ficha de cada pote e montava a equação que era avaliada em certa ou errada. O jogo foi vencido pela equipe que teve mais alunos acertando a equação sorteada. A atividade foi realizada com cunho educativo e também para que a turma experimentasse outra maneira de aprender, diferente da resolução de exercícios, tentando:
A busca por um ensino que considere o aluno como sujeito do processo, que seja significativo para o aluno, que lhe proporcione um ambiente favorável à imaginação, à criação, à reflexão, enfim, à construção e que lhe possibilite um prazer em aprender, não pelo utilitarismo, mas pela investigação, ação e participação coletiva de um "todo" que constitui uma sociedade crítica e atuante, leva-nos a propor a inserção do jogo no ambiente educacional, de forma a conferir a esse ensino espaços lúdicos de aprendizagem. (GRANDO. 2000.p.15)
Porém, turmas de EJA apresentam algumas características bem latentes como a baixa autoestima e desta maneira, a turma mencionada não respondeu bem a atividade proposta; inclusive houve aprendizes que não quiseram ir ao quadro, evidenciando que:
A sua eventual passagem pela escola, muitas vezes, foi marcada pela exclusão e/ou pelo insucesso escolar. Com um desempenho pedagógico anterior comprometido, esse aluno volta à sala de aula revelando uma autoimagem fragilizada, expressando sentimentos de insegurança e de desvalorização pessoal frente aos novos desafios que se impõem. (COLEÇÃO TRABALHANDO COM A EDUCAÇÃO DE JOVENS E ADULTOS, VOL. 1, 2006, p. 16)
O docente precisa estar atento ao modo como uma turma responde a um determinado estímulo e deve estar disposto a modificar sua forma de ensinar, de transmitir o conhecimento. ZABALA (1998, P. 29) afirma que “a maneira de organizar a aula, o tipo de incentivos, as expectativas que depositamos, os materiais que utilizamos, cada uma destas decisões veicula determinadas experiências educativas, e é possível que nem sempre estejam em consonância com o pensamento que temos a respeito do sentido e do papel que hoje em dia tem a educação”. Assim, foi necessário buscar outro dispositivo no qual pudesse ser confirmada a eficiência no processo de ensinar/aprender e, assim, conseguir trazer os alunos para o centro deste processo. Os momentos de observação e regência compartilhada foram o ponto chave para isso, pois nortearam as ações a serem tomadas.
Durante estes períodos foi evidenciada a total falta de vontade da maioria dos alunos na sala; muito não copiavam a matéria, ficavam atentos aos seus aparelhos celulares ou a qualquer outra coisa. Na verdade, alguns ficavam olhando até para as paredes, para o chão e, quando questionados sobre seus comportamentos, apenas diziam que estavam cansados. Outro fato bastante chamativo é que não eram de idades tão avançadas e muitos não
trabalhavam durante o dia. Escolheram esta modalidade de ensino por levar menos tempo para terminar o ensino fundamental, alegando que iriam trabalhar depois; não tinham interesse de seguir os estudos.
Quem será o estagiário?
Ainda durante a regência compartilhada, houve uma noite que a turma parecia mais dispersa do que nas outras noites e o estagiário, incomodado com aquela situação, perguntou à professora se poderia ter uma conversa com os alunos e esta concordou prontamente. Este perguntou aos alunos quais eram os sonhos que tinham e, após dar um tempo para pensarem, começou a contar a história de um rapaz que havia tido a juventude parecida com a de alguns deles: trabalhava de dia, estudava durante a noite, as vezes não tinha dinheiro para o transporte e tinha que ir e voltar do colégio a pé, as vezes não tinha dinheiro para lanche e voltava para casa com fome. Contou que na época a cidade não tinha instituições públicas de ensino técnico e superior – diferente do momento atual- e que para seguir seus estudos, teve que ir embora. Contou como foi estudar fora, seguir trabalhando paralelamente e várias dificuldades que encontrou.
Contou que após concluir um curso técnico, foi morar na região serrana do Estado, mas seguiu estudando, fez faculdade, morou em outras regiões, por motivos profissionais e que ainda estava estudando e, para terminar, testemunhou: e hoje aquele jovem está na frente de vocês fazendo estágio como professor. Muitos alunos ficaram surpresos, outros achavam que era brincadeira, mas, no geral, todos começaram a pedir mais informações e perguntar sobre as cidades em que o mesmo havia morado e sobre as empresas que havia trabalhado. Depois de várias respostas, o estagiário terminou aconselhando a turma que era importante ter sonhos, ter objetivos, tem um “porquê” viver. No fim da aula, muito alunos vieram despedir-se do mesmo e houve uma real aproximação entre todos. Até esse momento a distância entre estagiário e alunos era latente, tanto que alguns dos últimos mostravam insegurança ou ficavam arredios quando o primeiro ingressava na sala. Talvez nem acreditassem que se trava mesmo de um aluno de outra modalidade, podendo ter pensado que poderia ser alguém “mandado” para observar os mesmos. O Fato é que esta conversa foi importante para os propósitos do estagiário na sua regência, confirmando FREIRE ao afirmar:
Como prática estritamente humana jamais pude entender a educação como experiência fria, sem alma, em que os sentimentos e as emoções, os desejos, os sonhos devessem ser reprimidos por uma espécie de ditadura racionalista. Nem tampouco jamais compreendi a prática educativa como uma experiência a que faltasse rigor em que se gera a necessáriaria disciplina intelectual (FREIRE, 1996, p. 146).
Quando a regência iniciou foi mantida a mesma forma de transmitir o conhecimento, utilizando o quadro para desenvolver o conteúdo, logo após, colocando exercícios para serem resolvidos e deixando um tempo para os alunos resolverem, para só depois disso, desenvolver a correção dos cálculos. Não seria de bom senso mudar de maneira abrupta este processo, pois a turma poderia não responder bem a troca de professor somada a troca do método educacional. Por si só a turma já tinha muitas dificuldade em ser conduzida e o melhor era implantar novidades de maneira gradual. Para Fernandez (1991.p.47) "para aprender, necessitam-se dois personagens (o que ensina e
o que aprende)” e, inevitavelmente, um relacionamento entre estes. A falha neste processo causa problemas em um deles, na escola, ou nos pais, não necessariamente no que aprende. Na segunda semana, quando a turma chegou ao conteúdo de discriminante, o modo de ensinar passou a ser modificado, pois ao passar um exercício no quadro, o estagiário deixou os alunos buscarem a resposta e, ao mesmo tempo, começou a andar entre as classes, observando,
incentivando os aprendizes a tentar obter o resultado. Começou assim a ser explorada a interação entre os dois lados do processo educacional.
PERCURSO METODOLÓGICO: INTERAÇÃO ENTRE O PROFESSOR E O ALUNO
Ao transitar entre os alunos e observar que estes continuavam o processo de esperar o exercício ser desenvolvido no quadro e apenas copiar a resposta, foi iniciado um processo de interação onde o estagiário convidava um ou dois alunos a se aproximarem de um terceiro e juntos debatiam o exercício e montavam o mesmo no caderno. Em um determinado momento o grupo de alunos era deixado com o desafio de finalizar a atividade e isso começou a ser observado pelo outros membros da sala e estes começaram a pedir ajuda ao estagiário que ia montando pequenos grupos e auxiliando nos primeiros passos. Finalizando a obtenção do resultado final, a questão era montada no quadro, questionando os pequenos grupos e reforçando os pontos que necessitavam ser observados, como regras de sinais e o que o resultado representava em termos matemáticos. Desta forma, fugia-se da maneira tradicional de resolver um problema matemática. Quanto a isso temos:
É um ponto consensual entre as pesquisas de educação Matemática, o fato de que o ensino da Matemática tem sido feito de forma enfadonha, com ênfase em uma memorização aleatória de resultados conceituais, apresentados sem nexo, como se fossem prédeterminados. GIARDINETO (1999, p. 03)
Com certeza o processo apresentou-se demorado e a quantidade de exercícios a cada etapa do conteúdo não era tão longa, porém a qualidade do aprendizado, embora lenta, podia ser percebida. Menciona-se também neste tópico que alguns alunos mostravam entusiasmo ao passo que conseguiam resolver trechos sem o auxílio do estagiário.
Outro ponto importante é que alguns alunos que se mantinham arredios, acabavam solicitando ajuda e conseguiam demonstrar apropriação do aprendizado e com o tempo já estavam respondendo junto aos outros os questionamentos feitos nas correções. Por tratar-se de uma turma formada, em parte, por alunos repetentes que já tinham algum conhecimento do conteúdo, alguns destes optaram por também andar entre as classes auxiliando os
colegas e esta ação foi apoiada pelo estagiário, incentivando e, em alguns momentos, até pedindo que estes explicassem para os que esperavam ajuda. Quanto a isso, aponta-se:
[...] uma parte importante da aprendizagem da Matemática está relacionada com o desenvolvimento de explicações aceitáveis matematicamente, quer dizer, com a elaboração
de argumentos válidos na Matemática. [...] Desta forma, as conversações entre alunos nas aulas de Matemática poderiam contribuir para que estes pudessem adotar formas próprias de raciocínio matemático. [...] Deve se levar em conta que este tipo de conversação ocorre utilizando a linguagem natural que atua como metalinguagem para explicar pensamentos matemáticos (NESHER, 2000, p. 120 e 121).
Evidentemente alguns alunos não receberam bem este processo e preferiram ou tentar sozinho, ou permanecer sem buscar a resolução e apenas copiá-la do quadro, outros poucos mantiveram seu comportamento de sequer copiar a matéria. Com o tempo, alguns alunos preferiram fazer sem ajuda e ao conseguirem resolver alguma
etapa do cálculo, ficavam surpresos por estarem conseguindo aprender. Não eram muitos, mas houve os que mostraram uma melhora significativa nas resoluções. A grande maioria ainda precisou de ajuda e, ao serem desafiados em conseguir continuar sozinho, em alguns momentos tentavam, mas em outros esbarravam em falhas onde era evidenciado que os processos educacionais em que foram expostos no passado, não haviam obtido bons
resultado.
RESULTADOS E DISCUSSÕES
Após dezesseis períodos de conteúdo utilizando este método de interação com os alunos, foi aplicado um teste de conhecimentos e alguns alunos demonstraram dificuldades já esperadas, identificadas no transcorrer das aulas. Porém cinco alunos chegaram muito perto de gabaritarem a avaliação. Isso foi bastante gratificante para o estagiário, pois demonstrou que o método escolhido havia apresentado algum resultado num espaço de tempo bem reduzido, já que durante as duas primeiras etapas do estágio o nível da turma havia preocupado bastante. Falando da interação na sala de aula, a seguinte afirmação nos apoia :
Considerando que o processo de aprendizagem ocorre em decorrência de interações sucessivas entre as pessoas, a partir de uma relação vincular, é, portanto, através do outro que o indivíduo adquire novas formas de pensar e agir e, dessa forma apropria-se (ou constrói) novos conhecimentos. TASSONI (2000, p. 6).
Foi esta interação que permitiu ao estagiário entender algumas das dificuldades dos alunos, como pensavam e o que os levava a cometer erros, a princípio, incompatíveis com o ano que estavam cursando e também porque alguns sequer conseguiam organizar os primeiros pensamentos sobre os problemas propostos.
Quanto a esse tópico, VITTI argumenta:
O fracasso do ensino de matemática e as dificuldades que os alunos apresentam em relação a essa disciplina não é um fato novo, pois vários educadores já elencaram elementos que contribuem para que o ensino da matemática seja assinalado mais por fracassos do que por sucessos. VITTI(1999, p.19).
Assim, dentro de um curto espaço de tempo, entende-se que algum resultado positivo foi obtido com
a estratégia da interação, ao observar que os jogos não seriam um bom instrumento e que não seria a simples
resolução de exercícios no quadro a ação por continuar. Segundo os PNC:
É consensual a ideia de que não existe um caminho que possa ser identificado como único e melhor para o ensino de qualquer disciplina, em particular da matemática. No entanto, conhecer diversas possibilidades de trabalho em sala de aula é fundamental para que o professor construa a sua pratica. Dentre elas, destaca se a história da matemática, as tecnologias da comunicação e os jogos como recursos que podem fornecer os contextos dos problemas, como também os instrumentos para construção das estratégias de resolução. (p.48).
Finalizando a discussão e sem a intenção de criticar os métodos utilizados anteriormente com a turma mencionada neste artigo, é notório que para que exista o aprendizado é necessário que seja criado um ambiente propício para tal, onde a curiosidade seja alimentada e motivada.
Podendo a motivação ser ativada de duas formas:
A motivação pode ser ativada e regulada pela pessoa (intrínseca) ou pelo ambiente (extrínseca). Quando ativada por motivos internos (curiosidade, fome, fadiga, medo) é auto- regulada. Quando motivada por fatores externos (dinheiro,
elogios, notas, críticas), é regulada pelo ambiente. OLIVEIRA e CHADWICK (2001, p. 62)
CONCLUSÃO
O uso das listas de exercícios como ferramenta de aprendizado sem uma motivação para vem pelos anos mostrando-se como um instrumento ineficiente nos processos educacionais. Esta prática precisa ser repensada, ou, quando utilizada, não pode ser simplesmente um ato de se conseguir chegar ao resultado correto.
Estar atento aos alunos, suas dificuldade e possibilidades de aprender, deve ser um ato constante do
docente, sem descuidar para o fato que, inevitavelmente, as pessoas tem maneiras diferentes de aprender e
tempos diferentes para isso.
É necessário que seja criado ambiente propício para que o aprendiz prossiga e cabe ao docente tecer
estratégias para isso. É esse elemento que detém o conhecimento e os meios para tal e o aluno não pode ser
considerado apenas um “armazenador” de saberes; é crucial que seja o indivíduo central no processo. O ponto mais importante nesta atividade curricular foi confirmar que a aproximação com os alunos ajudou e muito a conseguir transmitir, mesmo que em pequena escala, um pouco do conteúdo que estava programado.
REFERÊNCIAS BIBLIOGRÁFICAS
COLEÇÃO TRABALHANDO COM A EDUCAÇÃO DE JOVENS E ADULTOS – ALUNOS E ALUNAS
DA EJA. Brasília: SECAD – Secretaria de Educação Continuada, Alfabetização e Diversidade, 2006.
Disponível em: http://portal.mec.gov.br. Acesso em 11/07/2019.
GRANDO, R.C. Recursos didáticos na Educação Matemática: jogos e materiais manipulativos. Revista
Eletrônica Debates em Educação Científica e Tecnológica, Vitória, v. 5, n. 2, p.393-416, out. 2015.
GIARDINETO, J.R.. Matemática escolar e Matemática da vida cotidiana. Campinas/SP. Autores
Associados, 1999.
FERNANDEZ, A. (1991). A Inteligência Aprisionada. Porto Alegre: ARTMED.
FREIRE, P. Pedagogia da autonomia: Saberes necessários à pratica educativa. São Paulo: Paz e Terra,
1996.
NESHER, P. (2000). Posibles relaciones entre lenguaje natural y lenguaje matemático. In GORGORIÓ,
N., DEULOFEU, J. e BISHOP, A. (coords.). Matemáticas y educación – retos y cambios desde una
perspectiva internacional (154). Barcelona: Editorial GRAÓ.
OLIVEIRA, J.B.A.; CHADWICK, C. Aprender e Ensinar. São Paulo: Global, 2001.
PCN - Parâmetros curriculares nacionais: Matemática/ Secretaria de Educação Fundamental –
Brasília: MEC/ SEF. 1998. 148p.
TASSONI, E. C. M. Afetividade e produção escrita: a mediação do professor em sala de aula.
Dissertação de Mestrado, Faculdade de Educação UNICAMP. 2000
ZABALA, A. A prática educativa: como ensinar. trad. Ernani F. da F. Rosa. Porto Alegre: ArtMed, 1998.