GEOMETRIA: HISTÓRIA E ENSINO
 
GEOMETRIA: HISTÓRIA E ENSINO
 


A Geometria como ramo matemático surgiu enquanto atividade empírica dos povos antigos para atender as suas necessidades da época, sendo suas primeiras sistematizações realizadas pelos gregos que muito contribuíram para esse ramo do saber. Platão, Eudoxo e muitos outros deram à Geometria um caráter especial, encarando-a como um ramo de destaque da ciência Matemática. Mas, é com o matemático grego Euclides que a Geometria recebeu seu grande impulso. Euclides sistematizou em sua clássica obra, os Elementos, os principais conhecimentos trabalhados pelos seus antecessores, dando um caráter axiomático-dedutivo ao conhecimento geométrico da época. Depois da contribuição grega, passamos a várias outras, que impulsionaram mais o desenvolvimento da Geometria enquanto ramo matemático. Descartes gerou a Geometria Analítica, Poncelet e Chasles, introduzindo novas concepções, que contribuíram para o surgimento da Geometria Projetiva; Cayley introduziu elementos imaginativos às descobertas de Poncelet e Chasles, que foram posteriormente desenvolvidos e unificados por Felix Klein. (Piaget & Garcia, 1987).

Os primeiros conhecimentos geométricos foram elaborados a partir das necessidades do homem em compreender melhor o meio onde ele se encontrava, o que talvez justifique a origem de sua palavra. No sentido próprio da palavra, a geometria deriva do grego "geometrein" e significa medição de terras  geo: terra, metrein: medir, surgindo como ciência empírica para resolver problemas práticos do homem. Heródoto, o "pai da história", é o primeiro a apontar para esta origem da Geometria, localizando no Egito antigo os primeiros momentos dessa, digamos, "Geometria Empírica".

"Disseram-me ainda os sacerdotes que Sesóstris realizou a partilha das terras, concedendo a cada Egípcio uma porção igual, com a condição de lhe ser pago todos os anos certo tributo. Se o rio carregava alguma parte do lote de alguém, o prejudicado ia procurar o rei e expor-lhe o acontecido. O soberano enviava agrimensores ao local para determinar a redução sofrida pelo lote, passando o dono a pagar um tributo proporcional à posição restante. Eis, segundo me parece, a origem da geometria, que teria passado desse país para a Grécia" (Heródoto,p. 116, ?).

Medir as terras para fixar os limites das propriedades era uma tarefa importante nas civilizações antigas, especialmente no Egito. Ali as enchentes anuais do rio Nilo inundavam as áreas férteis e derrubavam os marcos fixados no ano anterior, obrigando os proprietários de terras a refazer os limites de suas áreas de cultivo. Impunha-se assim a tarefa de refazer os limites com base em informações parciais ou, quando destruídas por completo as fronteiras, tratava-se de refazê-las de modo a demarcar o desejado número de propriedades, conservando as áreas relativas que possuíam no passado. Os egípcios tornaram-se hábeis delimitadores de terras e devem ter descoberto e utilizado inúmeros princípios úteis relativos às características de linhas, ângulos, e figuras, como por exemplo, o de que a soma dos três ângulos de um triângulo é igual a de dois ângulos retos, e o de que a área de um paralelogramo é igualà do retângulo que tenha a mesmabase e a mesma altura. E ademais, documentos históricos mostram que os egípcios e os babilônios, muito antes dos gregos, conheciam casos particulares do teorema de Pitágoras, expressos em relações como 32 + 42 = 52 (Boyer, 1974). Esta visão pragmática do povo egípcio fez com que eles, por intermédio da observação e da experimentação, obtivessem resultados geométricos através do raciocínio indutivo. De fato, os egípcios se limitaram à acumulação de conhecimentos que os habilitavam a resolver problemas de traçado de limites, de comparação de áreas, de projetos arquitetônicos e engenharia de construções, dentre outros.

Os egípcios, assim como os babilônios, já tinhamuma Geometria, mas somente o que bastasse para as suas necessidades práticas e não para uma ciência organizada. Apesar de todo o material algébrico que possuíam, só se pode encarar a matemática como ciência, a partir dos séculos VI e V a. C., na Grécia. A Matemática grega distingue-se da babilônia e da egípcia pela forma como era encarada. Contrariamente a estes últimos, os gregos fizeram-na uma ciência propriamente dita, sem a preocupação com suas aplicações práticas.

Os gregos perceberam o que os egípcios eram capazes de fazer e assimilaram seus princípios empíricos. Ao conhecimento assim delimitado, os gregos deram o nome de Geometria, isto é, medida da terra como posto acima. Os gregos, ao contrário dos egípcios, apreciavam a Geometria não apenas em virtude de suas aplicações práticas, mas em virtude de seus interesses teóricos, desejando compreender a matéria por ela mesma, e não em termos de sua utilidade. Aos gregos não bastou apenas o critério empírico, procuraram encontrar demonstrações dedutivas e rigorosas das leis acerca do espaço, que governam aplicações práticas da Geometria (Greemberg, 1980).

É, sem dúvida, com os matemáticos gregos, começando com Tales de Mileto, que a Geometria é estabelecida como teoria dedutiva, continuando nos séculos posteriores, nomeadamente pelos pitagóricos, cuja máximo expoente, é o tão bem conhecido Pitágoras. Com Tales e Pitágoras, no século VI a. C., o pensamento matemático sofre uma brusca transformação em profundidade, na aquisição de um espírito crítico e de uma nova liberdade de imaginação criadora, assumindo características imediatamente familiares ao matemático de hoje, a saber:

1)necessidades de definições precisas

2)preocupação com explicitar pressuposições

3)desenvolvimento do pensamento dedutivo e seu emprego para unificar o pensamento matemático da época

4)noção da pesquisa matemática, formulação clara dos problemas e distinção nítida entre uma conjectura e um teorema (Greemberg, 1980).

Pertenceu à Academia de Platão em Atenas um dos maiores matemáticos da Grécia, Eudoxo, criador da famosa teoria das proporções. Esta teoria, que se acha exposta nos "Elementos"[1]de Euclides (livro V), é a resposta dos gregos ao problema do contínuo, posto pela geometria.

Foi aproximadamente a 300 anos antes de Cristo que Euclides, outro matemático grego de renome, escreveu seu livro clássico, Os Elementos, em que reuniu e apresentou de modo sistemático as principais descobertas geométricas de seus precursores. Esta obra é um dos clássicos que maior influência exerceu no pensamento ocidental. Nos tempos antigos, na Idade Média e no período moderno até o século XIX, Os Elementos foram não apenas o livro texto de Geometria, mas o modelo daquilo que o pensamento científico devia ser.

Euclides foi o primeiro a apresentar, de maneira sistemática, a Geometria como ciência dedutiva. Isto significa que toda afirmação deve ser deduzida logicamente de outras afirmações mais simples, e assim sucessivamente. Nota-se que esta cadeia é finita e que no seu começo devem existir algumas não demonstradas, que Euclides chamou de postulados. Euclides procurou escolher como postulados afirmações que, por sua simplicidade, seriam aceitas por qualquer pessoa de bom senso e que eram, em um certo sentido, evidentes por si mesmas. O procedimento de Euclides foi examinar as propriedades que todas linhas ou figuras de tal ou qual espécie devam ter. Não apenas isso, ele formulou leis de modo a torná-las rigorosas e absolutas (nunca como simples aproximação). Ele diz, por exemplo, que a soma dos ângulos internos de qualquer triângulo é igual a soma de dois ângulos retos. Não diz tratar-se de um resultado aproximado ou usualmente verdadeiro, põe a asserção como algo rigoroso e absolutamente verdadeiro. O que é mais importante, Euclides não se limita a enunciar um grande número de leis geométricas, ele demonstra-as. Na verdade, seu livro consiste nas demonstrações colocadas de maneira sistemática. As demonstrações não são de caráter indutivo. Euclides não nos pede, jamais, que efetuemos medidas de ângulos de triângulos reais a fim de verificarmos que a soma de seus ângulos é iguala soma de dois ângulos retos. Ele não se preocupa, em momento algum, com experimentos ou observações desse gênero. Em vez disso, apresenta-nos demonstrações de caráter dedutivo, por meio das quais procura estabelecer as suas conclusões com rigor da absoluta necessidade lógica.

A evolução histórica da Geometria leva-nos a dois tipos de escola: a escola da atividade geométricaenquanto constatação empírica, interpretando o mundo concreto através das formas e a escola da atividade geométrica enquanto experiência racional de dedução, visando em ultima instância, àdemonstração (Eves, 1992; Câmara, 1999). Acreditamos que isto foi possível a partir da sistematização feita por Euclides, por volta de 300 a. C., dos conhecimentos geométricos dos povos antigos (egípcios, babilônicos, hindus e outros) gerando a obra Elementos. A abordagem da Geometria feita por Euclides dominou o ensino deste campo da matemática por mais de dois mil anos, sendo o método axiomático, por ele empregado, a base do que hoje chamamos "Matemática Pura" (Greemberg, 1980). O método axiomático de Euclides teve enorme sucesso por mais vinte e dois séculos não só na Matemática, mas também nos diversos campos do conhecimento.

Um sistema axiomático, como o elaborado por Euclides, é uma seqüência de sentenças ou proposições, precedidas por definições. As sentenças básicas são os postulados e axiomas. Partindo delas, são demonstrados os teoremas. Tanto os postulados como os axiomas e os teoremas são as teses de um sistema axiomático.

Euclides, ao axiomatizar a Geometria, utilizou os seguintes procedimentos:

1.apresentou uma lista de definições, esclarecendo os conceitos que iria empregar

2.em seguida, postulou cinco princípios especificamente geométricos, isto é, pediu que eles fossem aceitos sem prova (postular é pedir aceitação)

3.após explicar seus postulados, Euclides apresentou uma lista de cinco noções comuns (ou axiomas). Consoante a tradição grega, axiomas são verdades (supostamente) simples, consideradas evidentes. Axiomas não precisariam ser provados, por serem verdades óbvias. Tampouco eles seriam passíveis de prova, pois isso exigiria teses mais simples ainda, o que seria impossível, conforme sustenta a tradição. Neste contexto, a diferença entre postulados e axiomas poderia ser expressa da seguinte maneira: postulados seriam sentenças geométricas, cuja aceitação é pedida, para fins de demonstração; axiomas seriam sentenças muito mais gerais, cuja verdade estaria acima de qualquer dúvida. Axiomas seriam partilhados por todas as ciências (daí o nome noções comuns). Tanto postulados quanto axiomas seriam aceitos sem prova. Eles estariam na base de todas as provas que viessem a ser desenvolvidas no sistema

4.apoiado sobre essa base de definições, postulados e axiomas, Euclides passou às demonstrações de teoremas. Nos termos da tradição, um teorema não é uma verdade óbvia, mas torna-se evidente quando mostramos que ele pode ser derivado a partir dos postulados e dos axiomas, com oauxílio das definições.

A estrutura de um sistema axiomático é dedutiva, ou seja, nele parte-se de certas proposições e obtem-se outras, por puro raciocínio. Muito antes de Euclides, Aristóteles desenvolveu a lógica dedutiva, na qual estudou raciocínios como o célebresilogismo:

"Todo homem é racional",

"Ora, todo grego é homem"

"Logo, todo grego é racional".

Isto é um caso de dedução. Uma vez estabelecidas as duas primeiras sentenças, conclui-se daí que todo grego é racional. As duas primeiras sentenças são chamadas de premissas e a última de conclusão.

"Sem dúvida, a geometria é, nas matemáticas gregas, o ramo que deu prova de uma tal perfeição que se transformou, durante vários séculos, no próprio paradigma da ciência". (Piaget & Garcia, 1987, p.91).

Vimos então que a Geometria deixa de ter caráter apenas empírico com os gregos, que deram grande desenvolvimento a esse ramo da Matemática, sendo Euclides o maior expoente já que o mesmo organiza e dá uma sistemática especial a Geometria trabalhando com o sistema dedutivo. Passaremos agora a ver como a Geometria se desenvolveu após a introdução da axiomatização e dedução introduzida pelos gregos e por conseqüência, após o período puramente empírico trabalhado pelos povos antigos.

Depois dos gregos, a primeira grande mudança foi efetuada por René de Descartes. No apêndice "A Geometria" de seu "Discurso do Método", Descartes introduziu as idéias básicas do que veio ser posteriormente conhecido por 'Geometria Analítica'. Trata-se de substituir os pontos de um plano por pares de números e as curvas por equações e o estudo das propriedades das curvas será substituído pelo estudo das propriedades algébricas das equações correspondentes. A Geometria será assim "reduzida" à Álgebra.

Meio século depois da Geometria de Descartes, Newton publicará os seus Principia. O Cálculo Diferencial criado por Newton e, independentemente, por Leibniz dará à Geometria Analítica um alcance que Descartes não tinha visto. Mais tarde os Bernoulli e Lagrange vão completar a "redução" da geometria à análise.

"Dois mil anos após Euclides, a Geometria será para Newton o modelo para toda construção de uma Teoria Cientifica e os seus Principia inspirando-se neste modelo" (Piaget & Garcia, 1987, p.91)

Depois de ter-se constituído a Geometria Analítica por definitivo, estabeleceu-se um conjunto de doutrinas que produziram profunda revolução no pensamento matemático. Entre os promotores mais importantes desta revolução estão Poncelet e Chasles. Poncelet estudou as causas das diferenças entre o grau de generalidade de Geometria Analítica e os limites da Geometria antiga. Poncelet procurou um método específico da Geometria, sem recorrer à Álgebra. Ele visava ummodo de aplicar o raciocínio implícito, abstraído da figura, obtendo assim o mesmo grau de generalidade da Geometria Analítica (Piaget & Garcia, 1987).

Paralelamente a Poncelet, Chasles, depois de ter apresentado um estudo histórico que foi um clássico da historia da Geometria, chega a conclusões idênticas as de Poncelet.

"Poncelet e Chasles vão incorporar os sistemas de transformações como método fundamental da Geometria e que eles tentavam, assim, dar a esta ciência, independentemente da Álgebra a mesma generalidade, a mesma leveza, a fecundidade que a Geometria Analítica tinha demonstrado no curso do seu desenvolvimento no século XVIII". (Piaget & Garcia, 1987, p. 97).

Estes dois geômetras vão introduzindo a sua nova concepção da Geometria a partir de métodos algébricos. Inspirando-se nestes métodos algébricos é que elesderam um sentido puramente geométrico aos elementos imaginativos gerando uma nova Geometria, a Geometria Projetiva.

A introdução dos elementos imaginativos (como elipses, parábolas, pontos comuns no infinito) na Geometria Projetiva permitiram uma generalização e uma simplificação notável de diversos resultados.

Laguerre conseguiu dar uma definição do ângulo formado por duas retas. Tempos depois, Cayley introduziu a designação de absolutos, que seria a expressão analítica de todas as propriedades métricas euclidianas. Pertence também a Cayley a idéia de que todas as propriedades métricas das figuras não são outra coisa que as propriedades projetivas em relação com os absolutos.

As idéias de Cayley foram desenvolvidas por Klein, que conseguiu dar a estas idéias um grau de generalidade de tal forma que uma síntese de toda Geometria se tornou possível. A principal descoberta de Klein foi a natureza projetiva das geometrias euclidianas e a Geometria Projetiva em relação à Teoria das Paralelas. Klein estabelece que, em função do absoluto, podemos obter todas as geometrias: se a superfície absoluta de segundo grau é um elipsóide, um parabolóide elíptico ou um hiperbolóide obteremos a Geometria de Bolyai-Lobatchevsky; se a superfície é imaginária obteremos a Geometria não euclidiana de Rieman; quando tratamos de uma esfera obtermos a Geometria euclidiana. Estes trabalhos de Klein abrem caminho para uma nova etapa da Geometria.

REFERÊNCIAS BIBLIOGRÁFICAS

BOYER, C. História da Matemática, tradução Elza Gomide, São Paulo, Edgar Blucher, 1974.

CÂMARA, M. Efeitos de uma Seqüência Didática para a Construção do Conceito de Perímetro no 2º Ciclo do Ensino Fundamental, Anais do XIV Encontro de Pesquisa Educacional do Nordeste: Avaliação Institucional, 1999.

EVES, H. Tópicos de História da Matemática para Uso em Sala de Aula, São Paulo: Atual, 1992.

GREENBERG, M. J. Geometrias Euclidianas e não Euclidianas, San Francisco: W. H. Freeman Company, 1980.

HERÓDOTO, Coleção Grandes Filósofos da História, São Paulo: Ediouro, 19? (ano não divulgado na publicação).

PIAGET, J. & GARCIA, R. Psicogêneses e História das Ciências, Ciência Nova, Nº 6, Lisboa: Dom Quixote, 1987.

[1] Essa obra-prima é composta por 13 livros e compõe-se de 465 proposições abrangendo aritmética, geometria plana e geometria espacial.

 
Avalie este artigo:
(4 de 5)
27 voto(s)
 
Revisado por Editor do Webartigos.com


Talvez você goste destes artigos também
Sobre este autor(a)
Possui graduação em Licenciatura Plena em Matemática pela Universidade Federal Rural de Pernambuco (1999) , Mestrado em Ensino das Ciências pela Universidade Federal Rural de Pernambuco (2003) e Doutorado em Psicologia Cognitiva - linha de pesquisa Educação Matemática e Conceitos Científicos (2012)...
Membro desde julho de 2009
Facebook
Informativo Webartigos.com
Receba novidades do webartigos.com em seu
e-mail. Cadastre-se abaixo:
Nome:
E-mail: