17

RELAÇÃO E EFEITOS BIOQUÍMICO-NUTRICIONAIS SOBRE AS FALHAS REPRODUTIVAS DOS BOVINOS

E. I. C. da Silva¹ Departamento de Agropecuária – IFPE Campus Belo Jardim Departamento de Zootecnia – UFRPE sede

FALHAS REPRODUTIVAS DE BOVINOS

INTRODUÇÃO

Os bovinos, assim como tantos outros mamíferos e demais espécies, podem sofrer distúrbios durante o ciclo reprodutivo. Transtornos, alterações ou patogenias afetam diretamente a saúde do sistema reprodutor desses animais. As causas podem ser individuais ou multifatoriais, de caráter parasitário, patogênico, climático, nutricional etc. As causas de caráter parasitário podem ser controladas mediante a assepsia e profilaxia para a eliminação dos parasitas como carrapatos que vivem no mesmo habitat que o animal. As de caráter patogênico, como estão relacionadas à doenças, necessitam de especialistas na área, como o médico-veterinário para a avaliação, diagnóstico e tratamento por meio de práticas cirúrgicas ou na administração de fármacos. O fator clima pode ser controlado mediante o investimento em tecnologia e aquisição de equipamentos que possam manter a integridade e o bem-estar do animal, seja por ventiladores, exaustores, nebulizadores, aspersores, etc. Por fim, as de caráter nutricional podem ser prevenidas mediante a boa administração energética, proteica e mineral, além de uma boa qualidade de alimento volumoso ou concentrado que atenda e supra os requerimentos exigidos por cada categoria animal. Sendo assim, pode-se dividir as falhas reprodutivas dos machos bovinos relacionados à nutrição em energia, proteína, minerais e vitaminas. Antes disso, essas falhas estão relacionadas aos fatores de degeneração testicular e casos de hipospermia.

-

¹Tecg° em Agropecuária, normalista e acadêmico em Zootecnia. Pesquisador IPA. Colaborador do DEPAGRO do IFPE Belo Jardim. Prof. visitante do CAp da UFPE. Endereço para correspondência: eics@discente.ifpe.edu.br ou emanuel.isaque@ufrpe.br. WhatsApp: (82)98143-8399.

17.1 Degeneração testicular e Hipospermia

Degeneração testicular é uma importante causa de infertilidade em machos de todas as espécies. Entre as causas, podem ser consideradas a elevação da temperatura testicular (por isso torna-se importante que a bolsa escrotal tenha um certo tamanho que permita aos testículos ficarem longe do corpo, uma vez que a temperatura corporal mataria os espermatozoides, sendo essencial os testículos ficarem "caídos" para que possam ter no mínimo 2-3 °C à mesmos do que a temperatura corporal), infecções, fatores nutricionais, lesões vasculares, lesões obstrutivas etc. O testículo com degeneração mostra diminuição de tamanho, fibrose, alterações na espermatogênese, aumento de esperma imaturo ou anormal e azoospermia em casos severos.

Em casos de lesão testicular com dano parcial sobre o epitélio germinal, apresenta-se uma menor taxa de formação e maturação das células espermáticas. O macho pode ser fértil, mas a condição de hipospermia levará à que, sob condições de estresse ou alta carga de fêmeas a cobrir, se apresentem falhas na fertilização. Ejaculados com características de hipospermia não podem ser congelados, logo não servem para a indústria do sêmen.

Deficiências nutricionais retardam o início da puberdade e deprimem a produção e as características do sêmen. Os efeitos da má nutrição podem ser corrigidos em animais maduros, enquanto que é menos bem sucedido em animais jovens devido aos danos permanentes causados no epitélio germinal do testículo. (FRAZER, 2005; GORDON, 1996). Entre as principais limitantes de origem nutricional temos:

17.2 Vitaminas

17.2.1 Vitamina A

A deficiência de vitamina A e provitamina A (já que é essencial direta ou indiretamente para a função de todos os órgãos e particularmente para o crescimento e desenvolvimento dos epitélios) é necessária para a diferenciação celular, processo no qual se modificam as células não especializadas de modo que possam realizar funções específicas. Os órgãos reprodutores exigem retinol para que possam realizar o processo de

espermatogênese normal nos machos e para prevenir a necrose placentária e a mortalidade fetal na fêmea. Carências de Vitamina A produzem: degeneração do epitélio germinal, baixa espermiogênese parcial ou total, cornificação do epitélio vaginal, irregularidades do estro, atrasos na concepção, abortos, crias fracas e/ou deficientes visuais (cegas) e uma degeneração da placenta e a retenção da mesma. A deficiência da vitamina A pode conduzir a uma degeneração dos tubos seminíferos nos bovinos jovens e deve-se ao fato da supressão da liberação de gonadotropinas hipofisárias e noutros casos, a espermatogênese é impedida e as funções das células de Sertoli e de Leydig são alteradas. A vitamina A não é sintetizada no organismo, o que leva a uma dependência direta do fornecimento dessa vitamina através dos alimentos que o criador têm na propriedade, seja forragens ou concentrados de ótima qualidade.

Essa vitamina é essencial para os animais e humanos, visto que participa de inúmeras funções metabólicas no corpo dos mesmos. Sendo assim, o criador deve saber das exigências vitamínicas do seu rebanho. Em bovinos de corte a exigência e a recomendação de fornecimento dessa vitamina está entre 2200 UI/kg de MS para animais em crescimento e engorda e para reprodutores recomenda-se níveis de 3900 UI/kg de MS. Já para bovinos leiteiros esses números são diferentes, de acordo com livros de nutrição de ruminantes, animais em crescimento e engorda devem consumir matéria seca com teores de 80 UI/kg de MS, já para reprodutores e animais adultos a quantidade recomendada e exigida é de 110 UI/kg de MS, isso diariamente. As forragens suprem bem a exigência de vitamina A dos animais, em especial o capim tifton e o tanzânia são os mais recomendados uma vez que possuem altos teores vitamínicos e minerais. As vias de suplementação dessa vitamina é através das forragens (mais acessível e barato), através da ração concentrada ou pela água e suplementação injetável.

17.2.2 Vitamina E

A vitamina E é uma substância também conhecida como tocoferol, sendo sua forma mais ativa o alfa tocoferol. A vitamina E pertence ao grupo de vitaminas lipossolúveis amplamente distribuídas nos alimentos. A sua principal função é descrita como um antioxidante natural, agindo como tal, a vitamina E evita a oxidação de constituintes celulares essenciais e/ou evita

a formação de produtos tóxicos de oxidação, como os produtos de peroxidação formados a partir de ácidos graxos insaturados que foram detectados através de sua ausência. Essa vitamina é essencial para a reprodução normal em várias espécies de mamíferos. Ela ainda têm sido usada em clínicas reprodutivas de todo o mundo para o tratamento de abortos recorrentes e da infertilidade em ambos os sexos (CHAN, 2003).

A deficiência da vitamina E influencia a maturação espermática e a degeneração do epitélio germinal dos túbulos seminíferos, já que ela os protege da oxidação evitando a deterioração da peroxidase sobre os fosfolipídios poli-insaturados da membrana espermática RODRÍGUEZ, 1997). A deficiência dessa também evita o crescimento anormal. Na ausência de vitamina E, a quantidade de gorduras insaturadas dentro das células diminuem, causando anomalias estruturais e funcionais das organelas mitocondriais, lisossomos e até mesmo na membrana celular, se essa falta de vitamina E no adulto tornar-se acentuada ocorrerá a degeneração precoce do epitélio germinal, o que afeta, em primeiro lugar, as células mais evoluídas: os espermatozoides, cuja mobilidade se perde e sua formação torne-se cada vez mais rara, até chegar ao nível de esterilidade completa.

As exigências dos bovinos de corte quanto a vitamina em questão é de 15 – 60 UI/kg de MS diárias para animais em crescimento e engorda. Já para bovinos leiteiros, essa exigência é muito menor chegando a 0,8 UI/kg de peso vivo (PV) para animais em crescimento e engorda e para animais adultos e reprodutores cerca de 1,6 UI/kg de PV diários. Os alimentos, assim como as vias de suplementação ideais, são os mesmos mencionados no tópico acerca da vitamina A.

17.3 Proteínas

O efeito do excesso de proteína da dieta na reprodução é complexo. Os excessos de proteína podem também ter um efeito negativo na reprodução. Alguns efeitos foram demonstrados para explicar o pobre desempenho reprodutivo que algumas vezes é observado em dietas com excessivos níveis de proteína: Podem apresentar-se altos níveis de ureia no sangue, o que possui efeito tóxico sobre os espermatozoides, óvulos, e o embrião em desenvolvimento (WATTIAUX, 1990), igualmente, apresenta-

se um desequilíbrio energético que em casos severos bloqueia a liberação de LH produzindo alteração na maturação espermática nas células de Leyding.

As proteínas são importantes para todo o funcionamento normal e funções fisiológicas e metabólicas dos animais e do homem. Logo, a tabela 1 traz os níveis recomendados e exigências de bovinos de corte de diferentes categorias para que se possa prevenir e/ou combater as possíveis degenerações testiculares bem como a hipospermia, trazendo os requerimentos de bovinos leiteiros jovens o que é mais ideal para combater previamente esses distúrbios que afetam diretamente a função reprodutiva e o desemprenho dos animais.

Tabela 1: Exigências de proteína metabolizável (PM) e proteína bruta (PB), para diferentes categorias de bovinos de corte

Proteína (g/dia)	Vaca início lactação		Vaca final lactação		Vaca final gestação		Novilho GMD de 0,5 kg		Novilho GMD de 0,9 kg	
	PM	РВ	PM	РВ	PM	PB	PM	РВ	PM	РВ
Mantença	333	497	336	501	340	508	282	421	282	421
Crescimento	12	18	12	18	12	18	158	236	272	406
Lactação	229	342	78	116	0	0	0	0	0	0
Prenhez	0	0	1	2	37	55	0	0	0	0
TOTAL	574	857	428	637	389	581	440	657	554	827

Vaca Nelore com 420 kg de peso vivo.

Novilho Nelore com 312 kg de peso vivo - GMD: ganho médio diário. PB = PM / 0,67

Fonte: NRC, 1996.

Para os bovinos leiteiros jovens, os níveis de PB presente na dieta dos animais entre 150 e 400 kg de PV podem ser entre 12 e 22%, o que é ideal para a prevenção de degenerações, atraso à puberdade ou qualquer anormalidade que afete o desempenho dos animais.

Os alimentos mais proteicos são os de origem animal, porém não se pode ofertá-los completamente e diretamente aos animais, isto é, deve-se misturá-los a outros ingredientes; logo, o tipo e a quantidade de proteína depende dos ingredientes, do método de alimentação e do potencial produtivo e genético dos animais.

17.4 Minerais

17.4.1 *Manganês* (*Mn*)

O manganês é um componente de várias enzimas e essencial para a estrutura óssea normal. Quando a alimentação é deficiente em Mn por algumas semanas, o corpo parece conservar este mineral de forma eficaz.

Numa dieta média, cerca de 45% do mineral ingerido é absorvido. A absorção pode ser diminuída com o consumo de quantidades excessivas de Ca, P ou Fe. Após a absorção, o Mn liga-se à sua proteína transportadora e é conhecido como transmanganina. Os ossos, e em menor quantidade o fígado, músculos, e pele servem como locais de armazenamento desse mineral.

O Mn está envolvido na função pancreática e na utilização correta da glicose, sendo também um interveniente ativo na produção de tiroxina e de hormonas sexuais. Tem importância na produção do colesterol e no metabolismo de gorduras.

O Mn é um mineral de grande afinidade com o aparelho reprodutor. A deficiência desse elemento produz uma diminuição da fertilidade, atraso no desenvolvimento testicular e diminuição da espermatogênese. Se houver atrofia dos testículos, a produção de espermatozoides será reduzida e, portanto, a fertilidade será afetada.

A quantidade de 13 mg de Mn por kg de MS é suficiente para a obtenção de um crescimento adequado, mas para um crescimento testicular ideal e constante é necessário um mínimo de 16 mg de Mn por kg de MS.

Para uma boa suplementação que atenda às necessidades do gado de corte e leite, o nível ideal de Mn presente na MS em mg/kg deve estar entre 12-18 para os bovinos leiteiros e entre 20-50 para o gado de corte, tendo como recomendação ideal cerca de 40 mg/kg de MS diários para ambos. Esse mineral pode estar presente tanto na água quanto nas plantas presentes no pasto, portanto a suplementação natural é a melhor escolha, caso necessário a suplementação artificial através da ração no cocho ou do sistema SMI é recomendada.

17.4.2 Iodo (I)

A deficiência de I também ocasionar dificuldades reprodutivas e hipospermia. Só a captação da tiroide responde à TSH, e somente a glândula endócrina tiroide incorpora esse elemento nos hormônios que são por ela elaborados. Assim, mais de 90% do iodo do organismo é encontrado nas glândulas tireóideas, principalmente como iodo orgânico. Este grande acúmulo de I na glândula é trocado muito lentamente, cerca de 1% por dia.

O I entra no organismo via oral e sob a forma de íon iodeto, absorvendo-se muito facilmente desde o aparelho digestivo e passando rapidamente à corrente circulatória e, posteriormente à glândula tiroide (ALBARRACÍN, 2005) onde tem que vencer um gradiente de concentração de 1 a 20; todavia, dada a afinidade entre essa glândula e o iodo, não existe nenhum problema na organização. Na célula folicular, através da ação da peroxidase, converte-se em I molecular que passa para o coloide para se ligar à tiroglobulina e formar as hormonas tireóideas.

O I pode atuar sobre o aparelho genital diretamente ou através da hipófise. A tiroidectomia reduz a produção espermática, por sua vez a tiroxina exótica pode restaurá-la. Essa última, administrada dentro de seus limites fisiológicos, aumenta a produção espermática ao incrementar o metabolismo geral. Talvez, o mecanismo mais aceito para atingir esta função fisiológica seja a regulação do consumo de oxigênio pelas células espermáticas.

O I pode ser fornecido em quantidades entre 0,2 e 1,0 mg/kg de MS para todas as categorias animais e sem que o produtor possa se preocupar. O I, que é de suma importância, encontra-se na água e nos vegetais, porém pode ser incrementado via alimentação concentrada ou através da injeção mineral direta no animal.

17.5 Energia

A disponibilidade de energia está diretamente relacionada com o padrão normal de pulsatilidade do LH. No caso do balanço energético negativo (BEN), verifica-se um rápido aumento da utilização de glicose, resultando em hipoglicemia e, por conseguinte, hipoinsulinemia que, como se sabe, conduz rapidamente a uma lipólise com maior disponibilidade de

ácidos para oxidação. Por sua vez, a síntese de colesterol precursor de esteroides sexuais é diminuída. A alteração da relação estrogênios-androgênios no macho causa uma expressão pobre da libido ou desejo sexual.

No touro a subnutrição afeta intensamente a função secretora das glândulas acessórias, provocando uma diminuição de 30 a 60% nas concentrações de frutose e ácido láctico do esperma. A subnutrição afeta, sobretudo, a atividade androgênica e a espermatogênese.

Apoio

Realização

EMANUEL ISAQUE CORDEIRO DA SILVA

Técnico em Agropecuária – IFPE Bacharelando em Zootecnia – UFRPE

REFERÊNCIAS BIBLIOGRÁFICAS

- BARRENHO, Gonçalo José Pinheiro. **Nutrição e fertilidade em bovinos de leite**. 2016. Dissertação de Mestrado. Universidade de Évora.
- BERCHIELLI, Telma Teresinha; PIRES, Alexandre Vaz; OLIVEIRA, SG de. **Nutrição de ruminantes**. Jaboticabal: funep, 2006.
- BICUDO, S. D.; SIQUEIRA, J. B.; MEIRA, C. Patologias do sistema reprodutor de touros. **Biológico, São Paulo**, v. 69, n. 2, p. 43-48, 2007.
- BINDARI, Yugal Raj *et al.* Effects of nutrition on reproduction-A review. **Adv. Appl. Sci. Res**, v. 4, n. 1, p. 421-429, 2013.
- BOLAND, M. P. Efectos nutricionales en la reproducción del ganado. **XXXI Jornadas Uruguayas de Buiatría**, 2003.
- CHAN, Willie Hing Chang. **Uso de Tamoxifeno y Vitamina E en Pacientes con Varicocele**. 2003. Tese de Doutorado em Urologia. Universidad de Granada, España.
- DEHNING, R. Interrelaciones entre nutrición y fertilidad. In: Curso Manejo de la Fertilidad Bovina18-23 May 1987Medellín (Colombia). CICADEP, Bogotá (Colombia) Universidad de La Salle, Medellín (Colombia) Instituto Colombiano Agropecurio, Bogotá (Colombia) Sociedad Alemana de Cooperación Técnica-GTZ (Alemania), 1987.
- DE LUCA, Leonardo J. Nutrición y fertilidad en el ganado lechero. **XXXVI Jornadas Uruguayas de Buiatría**, 2008.
- DIAS, Juliano Cesar *et al.* Alguns aspectos da interação nutrição-reprodução em bovinos: energia, proteína, minerais e vitaminas. **PUBVET**, v. 4, p. Art. 738-743, 2010.
- FRAZER, Grant S. Bovine theriogenology. **Veterinary Clinics: Food Animal Practice**, v. 21, n. 2, p. xiii-xiv, 2005.
- GORDON, Ian. Controlled reproduction in farm animals series. Nova Iorque: CAB International, 1996.
- MAAS, John. Relationship between nutrition and reproduction in beef cattle. **The Veterinary Clinics of North America. Food Animal Practice**, v. 3, n. 3, p. 633-646, 1987.
- MAGGIONI, Daniele *et al.* Efeito da nutrição sobre a reprodução de ruminantes: uma revisão. **PUBVET**, v. 2, n. 11, 2008.
- NATIONAL RESEARCH COUNCIL et al. NRC. Nutrient requirements of domestic animals. Nutrient requirements of beef cattle. Washington, DC: National Academy Science, 1996.
- NICODEMO, M. L. F.; SERENO, J. R. B.; AMARAL, T. B. Minerais na eficiência reprodutiva de bovinos. **Embrapa Pecuária Sudeste-Documentos (INFOTECA-E)**, 2008.
- PASA, Camila. Relação reprodução animal e os minerais. Biodiversidade, v. 9, n. 1, 2011.
- PITA RODRÍGUEZ, Gisela. Funciones de la vitamina E en la nutrición humana. **Rev. cuba.** aliment. nutr, v. 11, n. 1, p. 46-57, 1997.
- RADOSTITS, Otto M. *et al.* (Ed.). **Veterinary Medicine E-Book: A textbook of the diseases of cattle, horses, sheep, pigs and goats**. Elsevier Health Sciences, 2006.
- SANTOS, José Eduardo Portela. Efeitos da nutrição na reprodução bovina. In: **Congresso Brasileiro de Raças Zebuínas**. 1998. p. 24-75.
- SARTORI, Roberto; GUARDIEIRO, Monique Mendes. Fatores nutricionais associados à reprodução da fêmea bovina. **Revista Brasileira de Zootecnia**, v. 39, p. 422-432, 2010.
- SHORT, Robert E.; ADAMS, D. C. Nutritional and hormonal interrelationships in beef cattle reproduction. **Canadian Journal of Animal Science**, v. 68, n. 1, p. 29-39, 1988.
- TEIXEIRA, J. C.; TEIXEIRA, LFAC. **Alimentação de bovinos leiteiros**. FAEPE, Lavras, 1997.
- WATTIAUX, Michel Andre. **Reproduction and nutrition**. Babcock Institute for International Dairy Research and Development, Madison: University of Wisconsin, 1995.

Emanuel Isaque Cordeiro da Silva Belo Jardim, 10 de abril de 2020.