

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE PERNAMBUCO / CAMPUS BELO JARDIM – PE

Av. Sebastião Rodrigues da Costa, s/n - Bairro São Pedro - Belo Jardim / PE - CEP: 55165-000 PABX: 81 3726-1355

MECANIZAÇÃO AGRÍCOLA

EMANUEL ISAQUE CORDEIRO DA SILVA

Técnico em agropecuária pelo IFPE (Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco) entre 2016-2018. Atuação enfatizada em zootecnia geral, medicina veterinária, biologia, agroecologia, mecanização agrícola, olericultura, topografia e metodologia científica. Formação acadêmica em magistério (normal médio), pela Escola Estadual Frei Cassiano Comacchio de Belo Jardim, entre 2014 e 2017. Atuando em psicologia do desenvolvimento, prática pedagógica e didáticas avaliativas. Ensino Fundamental II entre 2010 e 2013. Ensino Fundamental I entre 2005 e 2009, todos pela Escola Municipal Manoel Teodoro de Arruda em Serra do Vento, Belo Jardim. Possui aperfeiçoamento em filosofia pelo Colégio de Aplicação da UFPE (Universidade Federal de Pernambuco), entre 2014 e 2015. Especializou-se em pedagogia pela EMMTA (Escola Municipal Manoel Teodoro de Arruda), entre 2014 e 2017. É técnico em filosofia pelo Colégio de Aplicação da UFPE, entre 2014 e 2016, com especialidade no pensamento filosófico antigo grego, e na filosofia contratualista de Thomas Hobbes e J. J. Rousseau. Possui nível técnico em biologia pelo Colégio de Aplicação da UFPE, entre 2012 e 2015, com especialidade em citologia e anatomia animal, e licenciado em biologia pela mesma instituição, entre 2014 e 2015, com a dissertação "Estudos Anato-Fisiológicos dos Animais Vertebrados". Estuda o curso de profissional de nível técnico em sociologia pelo Colégio de Aplicação da UFPE, entre 2017 e 2018. Atualmente, leciona turmas do EJA (Educação de Jovens e Adultos), bem como iniciação à biologia pela Escola Municipal Manoel Teodoro de Arruda. Emanuel presta os seguintes serviços: Técnico em Agropecuária, Técnico em Filosofia, Técnico em Biologia, Técnico em Sociologia, Aluno-Mestre da EJA e Estagiário em Ciência Animal.

RIQUELME ALEXANDRE DA COSTA – Técnico em Agropecuária pelo Instituto Federal de Pernambuco campus Belo Jardim.

MATHEUS TORRES DA SILVA – Técnico em Agropecuária pelo Instituto Federal de Pernambuco campus Belo Jardim.

MATEUS ANTONIO LIMA – Técnico em Agropecuária pelo Instituto Federal de Pernambuco campus Belo Jardim.

WELLINGTON BEZERRA CAVALCANTE - Técnico em Agropecuária pelo Instituto Federal de Pernambuco campus Belo Jardim.

Principais marcas de tratores no Brasil

No meio agrícola os tratores chamam muito a atenção pelo seu porte, seu design e sua capacidade de trabalho, mas quais são os principais fabricantes existentes em terras brasileiras, acompanhem.

1. Agrale

2. New Holland

2. Valtra

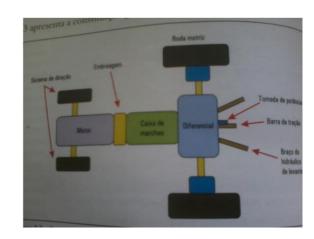
3. Massey Ferguson

4. John Deere

5.Case IH

6. LS Tractor

7. Mahindra Tratores



Constituição do Trator

O trator é constituído de partes internas e externas. As partes externas são reforçadas e têm a função de suporte das partes internas, constituindo-se de:

- Carenagem: também chamada de lataria ou carroceria, protege o motor e os sistemas acessórios.
- Cabine do Operador: onde se situam os comandos e os instrumentos de controle.
- Chassi: a parte mais robusta do trator, com a função de sustentar todos os componentes do trator. Toda a carroceria é montada em cima do chassi.
- Motor: é o responsável pela geração de potência para o trabalho e a movimentação da máquina. Os motores utilizados em tratores são de combustão interna, isto é, queimam combustível.
- Sistemas Acessórios ou de Funcionamento: são responsáveis pelo funcionamento do
 motor e pela transformação de sua força em trabalho. Em resumo, são os sistemas de
 transmissão, alimentação, elétrico, de lubrificação, de arrefecimento ou refrigeração, de
 direção e hidráulico.

A figura apresenta a constituição geral de um trator.

Motores: Constituição e

Funcionamento

1. Constituintes do Motor

Os principais constituintes de um motor de combustão interna são:

- Cabeçote: é a tampa superior do bloco do motor, rígida e robusta, a qual é separada do bloco por uma junta de vedação. Sobre o cabeçote ainda encontra-se uma tampa para conter o óleo lubrificante e proteger peças do cabeçote. O cabeçote também pode conter:
- Câmara de combustão, total ou parcial.
- Sistema de balancins do comando de válvulas.
- Canais para a água de refrigeração, caso seja a água, e óleo lubrificação.
- Aletas, que são protuberâncias metálicas para dissipar calor nos motores refrigerados a ar.
 - **Bloco:** é a maior peça do motor. O bloco é uma peça rígida e fixa na qual estão fixadas todas as outras partes. O bloco possui grandes câmaras chamadas cilindros, nas quais ocorre a combustão interna para gerar potência. O formato e tamanho do bloco variam de acordo com a potência do motor, com a razão de compressão, com o tipo de sistema de válvulas, tipo de refrigeração, número de cilindros e combustível utilizado. Certos blocos possuem tubos removíveis que formam as paredes dos cilindros e são chamados de camisas.
 - Cárter: é a tampa inferior do bloco e atua como depósito de óleo lubrificante do motor. O cárter também faz o papel de proteção, além de guardar a bomba de óleo lubrificante, o pescador e o tubo de sucção do óleo pela bomba.
 - **Émbolo ou Pistão:** é empurrado pra baixo pela expansão dos gases quando ocorre a explosão, transmitido o movimento linear à biela, na qual está preso por um pino. Os êmbolos podem ser fabricados em alumínio, ferro e aço. Em um motor que roda a 3.000 rotações por minuto, o pistão realiza um movimento completo ao longo do cilindro a cada centésimo de segundo. Este elevado ritmo, e a temperatura de cerca de 300°C nos motores a gasolina e 540°C no motor a diesel, atingida pela cabeça do pistão, levaram à introdução do alumínio e ligas de alumínio, mais leves e com uma maior capacidade de dissipação do calor. Atualmente, alguns êmbolos são fabricados em cerâmica, visando reduzir o atrito com o cilindro.
 - Anéis de Segmento: são anéis metálicos posicionados nas caneletas localizadas na lateral do corpo do pistão, com a função de vedar o cilindro separando a câmara de combustão do cárter. Geralmente, são fabricados em ferro fundido, com elasticidade para manter a boa vedação. Na parte mais inferior do pistão estão dispostos os anéis de lubrificação, com a função de distribuição e remoção de óleo lubrificante das paredes do cilindro.
 - **Pino do Êmbolo:** são pinos metálicos responsáveis por pender o êmbolo à biela, mantendo sua articulação. O pino geralmente é oco, visando à redução de seu peso e permitindo a passagem de óleo para a lubrificação dos anéis.

- **Biela:** é a peça que transmite o movimento retilíneo alternado do êmbolo para a árvore de manivelas.
- Árvore de Manivelas (ADM): é o eixo do motor, também chamado eixo virabrequim.
- **Volante**: é uma peça rígida, com grande massa de ferro fundido, fixada na extremidade da ADM que forma um conjunto para absorver e acumular a energia cinética do motor.

1.1 Funcionamento do Motor

- Ciclo: é a realização completa das fases de admissão, compressão, expansão e escape.
- Ponto Morto Superior: é a posição mais alta que o êmbolo atinge ao provocar a compressão máxima.
- Ponto Morto Inferior: é a posição mais baixa que o êmbolo atinge ao final da expansão.
- Curso: é a distância percorrida pelo êmbolo do PMI ao PMS.
- **Tempo ou Fase:** corresponde a uma descida do êmbolo ou meia volta da ADM (180°).
- Câmara de Compressão: é o volume acima do êmbolo quando atinge no PMS.
- Cilindrada: é o volume deslocado pelo êmbolo no curso do PMS ao PMI.
- Volume Total do Cilindro: é o volume da câmara de combustão mais volume deslocado.
- Taxa de Compressão: é a relação entre o volume total do cilindro e o volume da câmara de compressão.

1.2 Câmaras de combustão dos motores diesel

- Câmara de Turbulência ou Antecâmara: Para facilitar a partida há junto à câmara de combustão uma pequena câmara de turbulência na qual o combustível é injetado.
- Câmara de Pré-combustão: aqui possui como a de turbulência uma resistência elétrica incandescente para permitir a partida com o motor frio.

• Câmara de Injeção Direta: há somente uma câmara de combustão na parte superior do cilindro. A autoignição do combustível se dá quando o mesmo é injetado no cilindro e entra em contato com o ar aquecido devido à alta compressão.

2. Sistema de Alimentação dos Motores

- Tanque de Combustível: é o reservatório de combustível.
- Bomba Alimentadora: é a bomba que conduz o óleo diesel ao sistema sob baixa pressão.
- **Pré Filtro:** tem a função de eliminar água do óleo, além de algumas impurezas maiores.
- **Filtro:** geralmente possui um elemento filtrante de papelão especial ou feltro, em formato sanfonado.
- Bomba Injetora: é a bomba responsável por elevar a pressão do diesel para que possa ser atomizado no bico injetor.
- **Bico Injetor:** é um componente que possui pequenos orifícios na extremidade que fica internamente no cilindro, permitindo a atomização do diesel sob pressão.
- Retorno: é a tabulação responsável por trazer o diesel restante da injeção no cilindro. O
 retorno reúne o óleo de todos os bicos e conduz de volta ao tanque de combustível.

3. Sistema de Purificação de Ar

O filtro de ar banhado a óleo é composto de uma câmara de entrada de ar e um depósito de óleo. O ar é admitido no topo do filtro, que tem a função de pré-filtro, retirando as partículas mais pesadas por centrifugação.

O filtro de ar tipo seco, é composto de uma carcaça metálica estrategicamente construída para permitir o movimento rotativo do ar que retira as impurezas mais grosseiras

4. Sistema de Refrigeração os Arrefecimento

A temperatura da combustão nos motores pode chegar a 2500°C. Uma parte desse calor, de 70 a 80%, é dissipada pelos gases do escapamento, porém outra parte é absorvida pelas peças do motor. Se não houvesse a refrigeração dessas peças, elas poderiam se fundir

(derreter) devido à alta temperatura. A temperatura alta, entretanto, é necessária para melhorar a eficiência energética da queima do combustível e para desenvolver mais potência.

O calor gerado nos motores é dissipado via ar ou água. Assim, o sistema de arrefecimento pode ser a ar, a água ou combinado ar e água.

- **Refrigeração a Ar:** nesse sistema, o cabeçote do motor tem aletas metálicas responsáveis por aumentar a superfície de contato com a corrente de ar a fim de dissipar o calor.
- Refrigeração pela Água: nesse sistema, a água passa por canais internos do bloco do motor, circulando em torno do cilindro. A água vem de um reservatório, passa por dentro do motor retirando calor e se aquecendo e retorna posteriormente ao mesmo reservatório.
- Refrigeração com Ar e Água: nesse sistema, a água circula em volta das camisas e no cabeçote, retirando calor do motor, e é conduzida a um trocador de calor chamado radiador.
 O radiador consiste essencialmente de dois reservatórios, um superior e outro inferior , interligados por uma série de tubos de dimensões reduzidas, conhecido como colmeia, por onde a água circula.

5. Sistemas de Lubrificação

O sistema de lubrificação tem a função de distribuir o óleo lubrificante para as parte móveis e fixas dos motores. É composto por:

- Cárter: é a tampa inferior do motor, e também serve de reservatório de óleo lubrificante.
- Captação: tem a função de sucção do óleo do cárter do motor, possuindo um pré-filtro e sendo flutuante.
- **Bomba de Óleo:** é responsável pelo bombeamento do óleo no sistema de lubrificação, mantendo-o sob pressão.
- Filtro: é constituído por um compartimento cilíndrico com um elemento filtrante interno.
- **Manômetro:** indica a pressão do óleo no sistema de lubrificação a partir de um sensor, chamado de "cebolinha" e instalado geralmente na saída da bomba de óleo.
- Galerias: são os dutos através dos quais o óleo circula dentro do motor.

• Suspiro do Cárter: é um tubo que liga a parte interna do motor ao meio externo, evitando aumento de pressão interna do cárter e contaminação do óleo com resíduos.

6. Sistema Elétrico

O sistema elétrico tem três funções principais:

- Partida do motor
- Ignição da mistura nos motores do ciclo Otto por meio da centelha elétrica
- Funcionamento dos instrumentos do painel e das lâmpadas de faróis e faroletes

O sistema é constituído dos seguintes componentes:

- **Gerador:** é o responsável pela produção da energia elétrica que será acumulada na bateria ou consumida durante o funcionamento da máquina.
- Bateria: armazena energia elétrica produzida pelo gerador.
- Motor de Partida: é um motor elétrico que tem a função de iniciar o movimento da ADM para que as primeiras explosões ocorram e o motor dê a partida.
- Iluminação, Instrumentos do Painel e Buzina: a iluminação consiste por faróis de milha, ré, faroletes e setas. Os instrumentos do painel utilizam eletricidade vinda do gerador e bateria, como as luzes de advertência, termômetro, horímetro e etc. As buzinas são de série, e deve ser usada com moderação.

7. Sistema de Transmissão

Os tipos de mecanismos de transmissão são:

- **Hidráulicas:** são transmissões que utilizam a pressão estática do fluido.
- **Hidromecânicas:** são as que associam componentes hidráulicos e mecânicos, como embreagem e conversores de torque.

- Mecânicas: são as mais utilizadas nos tratores agrícolas. Os principais componentes são:
 - Embreagem de volante
 - Caixa de mudanças de marchas ou câmbio
 - Diferencial
 - Redução final
 - Rodas motrizes
 - Tomada de potência (TDP)

7.1 Embreagem

A embreagem é responsável pelo acoplamento ou desacoplamento do motor à caixa de marchas, de modo que mesmo o motor em funcionamento, acionando-se a embreagem, pressionando um pedal do lado esquerdo, seja possível engatar uma marcha e iniciar o movimento do trator suavemente.

7.2 Marchas

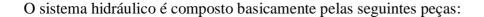
É importante saber a ordem cronológica das marchas do trator, vejamos uma tabela que nos auxilia a essa relação de força e velocidade:

Primeira	Segunda	Terceira	Quarta
+ Força	- Força	- Força	- Força
- Velocidade	+ Velocidade	+ Velocidade	+ Velocidade

Em um trator a consciência do uso das marchar é essencial para o trabalho, um exemplo é se o operador for trabalhar com mais força, logo com menos velocidade, então usa-se uma marcha mais inicial como a primeira.

7.3 Redução final

A redução final é um conjunto de uma engrenagem, extremidade externa do semieixo com o cubo da roda, responsável para realizar a redução necessária. Alguns tratores apresentam dois tipos de redução final:


• Direta: composta de uma engrenagem menor montada na ponta do semieixo que movimenta uma engrenagem maior.

• Epicicloidal: é formada por duas ou mais engrenagens planetárias.

7.4 Tomada de Potência (TDP)

A TDP transmite a potência do motor para o acionamento de implementos com partes móveis ativas. O eixo da TDP pode tirar força da caixa de mudanças por meio do eixo secundário, ou a partir do diferencial.

8. Sistema Hidráulico

- Braço do 1º ponto
- Braço do 2º Ponto
- 3° ponto
- Braço regulável do segundo ponto
- TDP
- Braço extensor do 3º ponto
- Estabilizador telescópico do braço
- Válvulas do controle remoto hidráulico
- Barra de tração
- Cilindro hidráulico

8.1 Constituintes do Sistema Hidráulico

• **Reservatório de óleo:** o óleo utilizado deve ser isento de detergentes, ou seja, deverá ser mineral puro.

- **Bomba Hidráulica:** tem a função de elevar a pressão do óleo no sistema para realizar trabalho.
- Tubulação: de chegada do óleo até a bomba é de baixa pressão, e a partir da bomba é de alta pressão.
- Filtro: geralmente possui um ou mais filtros com telas, elementos para reter partículas metálicas.
- **Válvulas:** de controle, regulam a vazão do óleo visando o cilindro, também há válvulas de segurança para evitar o excesso de pressão nas tubulações.
- Cilindro Hidráulico: realiza o trabalho com o empuxo do óleo sob pressão em movimento linear.
- Comandos: são alavancas utilizadas pelo operador para o controlar o fluxo de óleo para o cilindro.
- **Mola Mestra:** é a mola responsável pelo controle do fluxo do hidráulico, evitando sobrecarga no sistema em função do esforço do 3º ponto.
- Braços de Levante Hidráulicos: são dois braços inferiores e um terceiro, superior, chamado 3º ponto.

8.2 Engates

Os tratores apresentam dois tipos de engates:

- 1. Barra de Tração: é usada para tracionar implementos que necessitam apenas de arrasto.
- 2. **Barras de Levante Hidráulico:** são utilizados para suspender implementos ou mantê-los alinhados.

8.3 Controle do hidráulico de levante

• Controle de Reação: é um comando que permite aumentar ou reduzir a velocidade de descida do implemento.

- Controle de Posição: é controlado por uma alavanca localizada do lado direito do operador, a qual regula a altura dos braços inferiores do hidráulico.
- Controle Remoto: é utilizado para o acionamento hidráulico de implementos.

9. Controles e Instrumentos

9.1 Comandos

- Pedal de Embreagem: utilizado na troca de marchas.
- **Pedais de Freios:** sendo um direito e outro esquerdo.
- Alavanca Manual e Pedal Acelerador: aceleram a rotação do motor.
- Alavancas de Controle do Hidráulico: controlam o hidráulico traseiro e o controle remoto.
- Botões Interruptores: para luz alta, baixa, de direção, pisca alerta e buzina.
- Chave Geral: responsável pela ignição.
- Volante de Direção: responsável pela direção e movimento da rodas dianteiras.
- **Estrangulador:** desligam o motor na chave geral.

9.2 Instrumentos

- **Tacômetro/Horímetro:** indica a rotação do motor em RPM e as horas computadas.
- Manômetro: indica a pressão do óleo do motor.
- Indicador de Nível de Combustível
- **Termômetro:** indica a temperatura da água de refrigeração do motor.
- Lâmpadas Indicadoras: indicam os processos da máquina, e podem indicar erros em algumas peças.

Referências Bibliográficas

COMETTI, N. N. Mecanização Agrícola. Colatina: EAFCOL, 2007. 152 p.

EMANUEL ISAQUE CORDEIRO DA SILVA

Professor M. Sc. José Roberto Aragão de Araújo

IFPE Campus Belo Jardim